Stage 3 Maths Program Term 2 Week 2

NSW K-10 Mathematics Syllabus Outcomes

Multiplication and Division (1)

MA3-6NA - Selects and applies appropriate strategies for multiplication and division, and applies the order of operations to calculations involving more than one operation

- Use and record a range of mental and written strategies to divide numbers with three or more digits by a one-digit operator, including problems that result in a remainder
- Use the formal algorithm for multiplication by one- and two-digit operators

Volume and Capacity (1) – relate to 3D Space

MA3-11MG - Selects and uses the appropriate unit to estimate, measure and calculate volumes and capacities, and converts between units of capacity

- Use cubic centimetres and cubic metres to measure and estimate volumes
- Select and use appropriate units to measure volume
- Record volumes using the abbreviations cm3 and m3

Working Mathematically

- MA3-1WM Describes and represents mathematical situations in a variety of ways using mathematical terminology and some conventions
- MA3-2WM Selects and applies appropriate problem-solving strategies, including the use of digital technologies, in undertaking investigations
- MA3-3WM Gives a valid reason for supporting one possible solution over another

Assessment

Learning Goal - Multiplication and Division (refer to outcome)

Success Criteria - Multiplication and Division (refer to indicators)

TIB -

Learning Goal - Volume and Capacity (refer to outcome)

Success Criteria - Volume and Capacity (refer to indicators)

TIB -

Mathematics Weekly Plan

Term – 1 2 3 4 Week – 1 2 3 4 5 6 7 8 9 10 11 Strands – Multiplication & Division (1)/ Volume & Capacity (1)

		Monday	Tuesday	Wednesday	Thursday	Friday
Key Ideas:		r	Multiplication and Division	Volume and Capacity		
Warm Up	Additional warm up activities: TEN: Using your PLAN Data, students will work on TEN based activities for 10 minutes. Activities are differentiated based on group needs (view PLAN Data/Clusters).	Mark Pre-test as a whole class and provide immediate feedback.	TEN/ Ninja Numeracy/ Quick Revision Mentals	TEN/ Five Minute Frenzy/ Quick Revision Mentals	TEN/ Five Minute Frenzy/ Quick Revision Mentals	Mark Post-test as a whole class and provide immediate feedback.
Problem of the Day		Pre-test: Multiplication & Division/ Volume and Capacity	For the tinned food drive, 54 students each collected the same number of tins. They collected 3 tins in all. How many tins did each student collect? 18 tins	At the toy store, there are 102 model aeroplanes. The aeroplanes are evenly divided among 6 shelves. How many model aeroplanes are on each shelf? 17 shelves	A bread company makes 8 types of bread. A restaurant chain ordered 948 loaves of each kind of bread. How many loaves of bread in total did the restaurant chain order? 7584 loaves of bread	Post-test: Multiplication & Division/ Volume and Capacity

	Main Focus + Language	• Revision: short division strategies:	Continue revision of strategies:	 Model revision examples on the 	• Volume and Capacity: Brainstorm	Ask students to explain what
		no remainders.	modelling division strategies, both	board and encourage students to	with students their understanding	volume is.
		 Using hovercam, model to student's 	written and mental with no	write steps as you go in their	or prior knowledge on topic.	 Display a variety of images on
		simple division problems using	remainders:	books.	• Define each: Volume: refers to the	the board for students to solve
		short division.	 dividing the hundreds, then the 	• Example 1:	amount of liquid or how much	the volume of as quick revision.
		 Access student's prior knowledge of 	tens, and then the ones, e.g. 3248	• 63 x 4:	space the liquid takes up in a	• Examples:
		language:	÷4	1	container.	
		Quationt	3200 ÷ 4 = 800	63	• Capacity: refers to the amount of	
			• $40 \div 4 = 10$	× 4	space of a container for holding	8 cm
		Divisor/Dividend	• 8 ÷ 4 = 2		liquid.	6 cm
		 Alternative statements and the second statements 	 Add all the answers together. 	2	View simple YouTube video to	12 cm
		Explicitly model simple division	• So, 3248 ÷ 4=812		demonstrate meaning. Students	
		problems using 2 by 1-digit	 Additional examples to model with 	• Method:	note definitions in workbooks.	
		problems (formal algorithm).	no remainders:	• Multiply the ones: 4 × 3 = 12	https://www.youtube.com/watch	2 m
		Example.	• 5/355	• Place 2 in the ones place, but write	<u>PEGRCE8001BQE</u>	20 m
		nto	• 8/168	 the tens digit (1) above the tens 	Demonstrate to students now to find the undured of collide	2.5 m
				 column as a little memory note. 	modelling the formula: length y	
		4) <mark>2</mark> 48	Model strategy dividing with	You are <i>regrouping</i> (or carrying).	width x height = volume cm ²	
		• 4 does not go into 2. You can put	remainders:	-	 Example: Draw or find an image of 	
		zero in the quotient in the	 dividing the tens and then the 		a 3D space and model on the	
		hundreds place or omit it. But 4	ones, e.g. $243 \div 4$	0 3	hoard:	
۵.		does go into 24. six times. Put 6 in	$240 \div 4 = 60$	<u>* 4</u>		
		the quotient.	• $3 \div 4 = 1/4$ (becomes remainder,	2 5 2		10 m
5		hto	• So $243 \div 4 = 60^{3/3}$			10 111
5		062	 Additional examples to model this 	• Then multiply the tens adding the	((
-			method with remainders:	1 ten that regrouped.		
		4) <mark>2 4</mark> 0	• 6/634	• $4 \times 6 + 1 = 25$	5	<u>5 m</u>
ĺ		 The 2 of 248 is of course 200 in 	• 5/854	• Write 25 in front of the 2.	4	4 m
Ś		reality. If you divided 200 by 4, the		Note that 25 tens mean 250.	15cm	Explicitly model how to create a
		result would be less than 100, so	 Additional methods to assist in 	Additional examples to model:		range of measurements using
		that is why the quotient won't have	division of larger numbers: The	• 76 x 8		volume numbers only e.g.
		any whole hundreds. But then you	Subway or Subtraction Ladder	• 26 x 7	• Step 1: multiply the length and the	24cm3:
		combine the 2 hundred with the 4	<pre>strategy. Example: 144 ÷ 24 = 6</pre>	• 98 x 9	width: 15 x 3 = 45	 Draw a cube on the board and
		tens. That makes 24 tens, and you	 Subway method: repeat addition of 		• Step 2: multiply the answer by the	model possible measurements
		CAN divide 24 tens by 4. The result	the divisor (24) until you reach the	 Revise multiplication of 3-digit by 	height: $45 \times 4 = 180 \text{ cm} - \text{explain}$	for th hight, width and length
		6 tens go as part of the quotient.	dividend (144). Count how many	2-digit numbers using the	that a cubic unit is the measure of	e.g. 24 cm3 = h = 2, w = 2, l = 6
		Check the final answer: 4 × 62 =	times you required to reach the	extended form (long	of a suba which is 1 whith tall	• 2 x 2 = 4 x 6 = 24cm3.
		248. • Examples for students to complete:	dividend which will be the answer	multiplication). Explain that the	1 unit wide and 1 unit long	 This can be used as whole class
		• Examples for students to complete.	or the quotient of the dividend	multiplication of a digit in the tens	Using interlocking (connecting	with differentaition. Note:
			problem (6)	place value is multiplying by a	cube create the rectangular prism	model basic ones to allow
			Subtraction ladder: similar to	multiple of ten and that is why we	below model using hovercam	revision group to solve then
		Revision: division with remainders:	subway method instead you take	put the U-place holder in the	Ask the students: How many	place extension questions:
		h t o	and continue until you roach 0	algorithm.	cubes are in this rectangular prism	 Revision group: 38 cm3
		0 4 1 R1	Modelled examples below:	• <u>First step:</u> Multiply the ones digit	(cuboid)?	 Middle group: 124 cm3
			modelled examples below.	by the top factor (multiplicand)		• Main group: 863 cm3 5273 cm3
		4 / 10 5		and write the result on the line		 Encouage students to use
		• 4 does not go into 1 (hundred). So		below		whitboards to assist working
		combine the 1 hundred with the 6		781		out/interlocking cubes to help
		tens (160).		x 95		investiage possible answers.
		 4 goes into 16 four times. 		3905		• Wodelled examples:
						• 9 cm3 n=3, w=3, l=3

 4 goes into 5 once, leaving a remainder of 1. th h t o 0 4 0 0 R7 8) 3 2 0 7 8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds (3,200). 8 goes into 32 four times (3,200 ÷ 8 = 400) 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	If we multiply 781 x 95, the first thing to do is to multiply by 5, which is in the ones place of 95, by each one of the digits of the top factor from right to left, and place the result, 3905, on the line below, as shown in the image. • <u>Second step:</u> Multiply the digit in the tens place of the bottom factor by the top factor and write the result on the line below, but place a 0 in the ones place, since this part of the multiplication is a number of tens. 781 <u>x 95</u> <u>3905</u> 7029 • We continue with the example. Now we multiply the 9, given that it is in the tens' place of the bottom factor 95, by the top factor 781. The result, 7029, will have to be written under 3905 but moved one place to the left. • <u>Third step:</u> Add the products. 781 <u>x 95</u> <u>3905</u> 7029 7400	 Explain that we can count the cubes although it is quicker to take the length, width, and height and use multiplication. The rectangular prism above has a volume of 48 cubic units. Model examples of calculating the area of the rectangular prism: We need to do two multiplications to work out the volume. We calculate the area of one face (or side) and multiply that by its height. The examples below show how there are three ways of doing this. Length = 6 Width = 4 Height = 2 Model answer: Volume = 6 x 4 = 24 x 2 = 48 cubic units (volume units). Create other examples using cubes to model to students. 	 12 cm3 h=2, w=3, l=2 27 cm3 h=3, w = 1, l=9 36 cm3 h=3, w=6, l=2 100 cm3 h= 2, w=5, l=10 138 cm3 = h=3, w=1, l=46 Extension: students create their own volume measurment and model on the board their possible answers. Display the following examples on the board and answer with students during guided session. Mark answers as a whole class: http://www.commoncoresheets .com/Math/Volume/Finding%20 Volume%20of%20Rectangular% 20Prisms/English/1.pdf - provide students with worksheet for revision or draw in books.
		have to be written under 3905 but moved one place to the left. • <u>Third step:</u> Add the products. 781 <u>x 95</u> 3905 7029 74195 Add the products and the result of the multiplication is 74,195. Additional examples: • 243 x 26 • 239 x 76 • 936 x 98	 Model answer: Volume = 6 x 4 = 24 x 2 = 48 cubic units (volume units). Create other examples using cubes to model to students. 	

Group Activities	Revision Group - Names	Work with group using following worksheets to provide further scaffold and support to solve a range of division problems with and without remainders. Encourage students to example the steps out loud to monitor levels of understanding. http://www.k5learning.com/workshe ets/math/grade-4-long-division-3x1- digit-no-remainder-a.pdf http://www.k5learning.com/workshe ets/math/grade-4-long-division-3x1- digit-with-remainder-a.pdf	Work with this group to complete simple problems of Division Scoot game. Solve in workbooks using a variety of strategies: <u>https://www.teacherspayteachers.c</u> om/Product/Division-Scoot-Bundle- 700550	Using dice, students take turns and roll two dice to create problems to multiply. Begin by creating 2 by 1- digit multiplication problems. Extend students when ready, complete 3 by 1-digit problems. Play game similar to middle and main groups using dice. Students roll and the first person to get close to 100 wins.	5/6M Town Groups - Based on Continuum Clusters	 Work with these students to create a variety of 3D prisms and solve volume-using formula. Students make a rectangular prism using 24 cubes and record the dimensions (length, breadth, height). Determine the volume is 24 cubic units. Look at the relationship between the volume, length, breadth and height. What is the volume of each prism? 24 cubic units/cubic centimeters How can we calculate the volume using the length, breadth and height of the prism? Can you make other rectangular prisms with a volume of 24 cubic units? Students must draw their prisms in their workbooks and label their measurements for the length, width and height. Encourage students to work out the volume of each of their shapes.
---------------------	------------------------	---	--	--	--	---

Group Activities	Middle Group- Names	Create cards with various 1 by 4-digit OR students can create own problems using dice or decks of cards and use strategies to solve in their books Examples of problems: $3 \div 2259$ $7 \div 2229$ Extend students to by creating 2 by 4- digits problems.	Students work in groups to solve harder Division scoot problems: https://www.teacherspayteachers.c om/Product/Division-Scoot-Bundle- 700550	 Dicey Operations in Line <u>https://nrich.maths.org/13261</u> Each student draws a multiplication layout like this: X = Throw the dice five times each until all the cells are full. Whoever has the product closest to 500 wins. Students can extend themselves and make their goal numbers larger. You can vary the target to make it easier or more difficult. There are two possible scoring systems: A point for a win. The first person to reach 10 wins the game. Each player keeps a running total of their "penalty points", the difference between their result and 500 after each round. First to 500 loses. 	5/6M Town Groups - Based on Continuum Clusters	 Students are provided with interlocking cubes. They create a range of prisms and draw them in their books. Students will work out the volume of each of their shapes using the formula. Students can work in small groups or in pairs.
------------------	---------------------	--	---	--	--	---

	Main Group – Names	Dicey Operations Stage: 3 https://nrich.maths.org/6606 Each student draws a multiplication grid like this: Each student draws a division grid like this:	Students complete larger Division scoot problems: 2 by 4-digit division. Extend students to 3 by 4- digit problems. https://www.teacherspayteachers.c om/Product/Division-Scoot-Bundle- 700550	Dicey Operations Stage: 3 https://nrich.maths.org/6606 Each student draws a multiplication grid like this:	5/6M Town Groups - Based on Continuum Clusters	 Students create irregular 3D prisms and solve the volume using formula with interlocking cubes. Provide extension group with 'Thinker' questions to solve/ word problems. Examples: The volume of a container is 400cm3, if the length is 10cm, the height 5cm, what is the width?
Group Activities		 Throw the dice six times each until all the cells are full. Whoever has the answer closest to 100 wins. There are two possible scoring systems: A point for a win. The first person to reach 10 wins the game. Each player keeps a running total of their "penalty points", the difference between their result and 100 after each round. First to 500 loses. You can vary the target to make it easier or more difficult. 		 Throw the dice five times each until all the cells are full. Whoever has the product closest to 10000 wins. There are two possible scoring systems: A point for a win. The first person to reach 10 wins the game. Each player keeps a running total of their "penalty points", the difference between their result and 10000 after each round. First to 10000 loses. You can vary the target to make it easier or more difficult. You could introduce a decimal point. The decimal point could take up one of the cells so the dice would only need to be thrown four times by each player. You will need to decide on an appropriate target. 		 A tissue box has a volume of 1600cm3. Work out the possible dimensions and draw a diagram to illustrate your dimensions. Extension: Encourage students to find the volume of triangular prisms. Volume = ½ x b x h = 36 x 49 = 1764 = 1764 x 25 = 44100/2 = 22050 cm3

Mel Reskic Shell Cove Public School - 2018

	Feedback – Use the thumb	Revision: 104/4 = 26	Revision: 264/22 = 12	Revision: 62 x 7 =	Students complete the following	Groups create possible
	method after explicit modelling				worksheet to demonstrate level of	measurements for the length,
	to determine students	Middle: 126/21 = 6	Middle: 273/13 = 21	Middle: 73 x 16 =	understanding:	width and height for the following
	understanding and where they				Revision:	volume measurements:
	will be placed for group	Main: 1020/68 = 15	Main: 7384	Main: 8734 x 56 =	http://www.commoncoresheets.co	
	activities.				m/Math/Volume/Finding%20Volum	Revision:
	Marking Exit Slips – Next to each				e%20of%20Rectangular%20Prisms/	24 cm3 e.g. of possible answer:
	students Exit Slip, the teacher				English/1.pdf	l = 6, w = 2, h = 2.
	will check students answers and					6 x 2 = 12 x 2 = 24 cm3
p k/	will either write an: A = Achieved				Middle:	52 cm3
bac	N/Y = Not Yet N/Y students will				http://bonlacfoods.com/images/vol	
ed	become your target group.				ume-cubes-worksheets/volume-	Middle:
Ψ.					cubes-worksheets-3.jpg	98 cm3
						164 cm3
					Main: https://www.math-	
					drills.com/measurement/prisms_re	Main:
					ctangular volume surfacearea dec	345 cm3
					imal 001.pdf?v=1384731872 Note:	973 cm3
					students do not have to complete	
					surface area if they have not been	
					extended for this yet, however they	
					can be challenged.	
	 Students will practice their times 	s tables based on personal learning goals/	needs.		• Extension Activity: Exploring higher-order thinking (QTF): Pose this	
	 Students will work either in pairs 	s/individually and use whiteboards to prace	problem. Imagine a box, which is 1 metre long, 1 metre wide and 1			
	them aloud.		metre high. Ask:			
	 Extension: Students use mental a 	and/or written strategy learned througho	ut the week and multiply 4 by 4-digit nur	nbers and beyond.	What is the volume of the box in cubic meters?	
2 5	 Students solve and create word p 	problems that encompass division and mu	ultiplication.		What is the volume of the box in cubic	centimeters?
sio <	 Roll dice and multiply to 100. First 	st student to reach wins. Differentiate for	groups e.g. revision to 100, middle to 35	i0 and main to 1000. Students that go	How did you work out this answer?	
arl she	over target number busts. Closes	st without busting over number wins.		C C	How many centicubes would be neede	ed to fill the box?
xt ii iii	• Work with a partner to create a variety of prisms using int					ety of prisms using interlocking
	τ Δ cubes and calculate the volume.					
					Complete Mathletics/ iMaths works	heets.
					• Draw city scapes/buildings in workb	ooks and calculate volume of
					buildings using grid paper and exact	ruler measurements (Link to
					CAPA).	
~						
C						
pa						
, p						
ee u						
ю́г						
⊆ ct						
io fle						
at						
it B						
gis						
e e						
~						