Stage 3 Maths Program Term 2 Week I

NSW K-10 Mathematics Syllabus Outcomes

Addition and Subtraction (1)

MA3-5NA – Selects and applies appropriate strategies for addition and subtraction with counting numbers of any size

- Select and apply efficient mental, written and calculator strategies for addition and subtraction of numbers of any size Use estimation to check answers to calculations

3D Space (1)

MA3-14MG – Identifies three-dimensional objects, including prisms and pyramids, on the basis of their properties, and visualises, sketches and constructs them given drawings of different views

- Connect three-dimensional objects with their nets

Working Mathematically

- MA3-1WM Describes and represents mathematical situations in a variety of ways using mathematical terminology and some conventions
- MA3-2WM Selects and applies appropriate problem-solving strategies, including the use of digital technologies, in undertaking investigations
- MA3-3WM Gives a valid reason for supporting one possible solution over another

Assessment

SENA 3 and 4 if you haven't completed in Week I and 2

Use SENA I and 2 if needed - IEP for these students

Learning Goal - Addition and Subtraction (refer to outcome)

Success Criteria - Addition and Subtraction (refer to indicators)

TIB -

Learning Goal - 3D Space (refer to outcome)

Success Criteria -3D Space (refer to indicators)

TIB -

Homework - None this week

Mathematics Weekly Plan

Term – 1 2 3 4 **Week** – 1 2 3 4 5 6 7 8 9 10 11 **Strands** – Addition and Subtraction (1)/ 3D Space (1)

		Monday	Tuesday	Wednesday	Thursday	Friday
Key Ideas:		Whole Number			3D Space	
Warm Up			Mark tests as whole class – provide instant feedback	Ninja Numeracy	Five Minute Frenzy – Practice Time tables – <i>Individual goals</i>	Ninja Numeracy
Problem of the Day		Staff Developmental Day	Pre-Test: Addition & Subtraction/ 3D Space (nets)	To water her crops, a farmer used 418 gallons of water from a river. In addition, she used 584 gallons from a well. In all, about how many gallons of water did she use? Choose the better estimate. 1,000 700	An oil spill washed up on the coast and coated a total of 331 birds with oil. So far, a team of volunteers has cleaned 128 birds. About how many more birds do the volunteers need to clean? Choose the better estimate. 1,200 200	Post Test: Addition & Subtraction/ 3D Space (nets)

	Main Focus +	•	Revision: Mental Strategies for	• Review mental strategies for	• Revision of 3D shapes: Define 3	 As a whole class discuss prisms
			Addition using Estimation: Explain	subtraction using estimation:	Dimensional shapes and discuss	and pyramids; brainstorm what
	Language		to students that we use estimation	• Revise estimation as a whole class.	meaning with students: 3D	elements make a prism. A prism
			and rounding to check the	893 + 352 = 890 + 350	shapes: 3D shapes have faces	has two ends that are exactly
			reasonableness of answers to	549 + 482 = 550 + 480	(sides), edges and vertices	the same size and shape.
			calculations. Example: use	876 + 389 = 880 + 390	(corners). A 3D shape is described	• A prism has two opposite ends
			estimation to check the		by its edges, faces, and vertices	that are parallel to each other.
			reasonableness of answers to	871 + 393 = 900 + 400	(vertex is the singular form of	• A pyramid has triangular sides
			addition and subtraction	526 + 624 = 500 + 600	vertices). The exception is the	which and a base which is flat
			calculations, e.g. 1438 + 129 is	124 + 237 = 100 + 200	sphere which has no edges or	and can be either square or
			about 1440 + 130.		vertices. Polyhedron: A	triangular.
			 View the following YouTube video 	Explicitly model examples	polyhedron is a 3D shape that has	• A pyramid has triangular sides
			and discuss with students. Display a	involving subtraction:	flat faces and straight edges. A	which meet at one point called
			variety of sums on the board to	8736 - 2672 = 8700 - 2700	regular polyhedron is a 3D shape	an 'apex' to describe the
			model how to further estimate.	936 - 243 = 940 - 240	with all of its faces the same size	highest point above the base of
			https://www.youtube.com/watch?	77 – 26 = 80 – 30	and shape. Using a 3D object from	a pyramid or cone.
			v=qr-xHNNrZeA		the classroom e.g. tissue box,	 Display a range of nets on the
			Examples to model to the closest 10	Split Strategy:	model the following as students	board or have them pre-cut out.
			and 100:	76 - 34	take notes. Faces: Faces are the	Encourage students to write the
			Ten:	Step 1: estimation: 80 – 30 = 50	flat sides on a shape. Edges: Are	names on a whiteboard and
			394 + 661 = 390 + 660	Step 2: 70 + 6 - 30 + 4	the lined where two faces meet.	hold up to assess students'
			872 + 312 = 870 + 310	Step 3: 70 - 30 = 40	Vertices: Are the corners of a 3D	knowledge and understanding
60			265 + 233 = 270 + 230 – note:	Step 4: 6 - 4 = 2	shape, where three or more edges	of the 3D nets.
i			numbers from 5 and up, numbers	Step 5: 40 + 2 = 42 Additional	meet.	 As a whole class, students
ch			will need to be rounded to the next		Briefly view the differences	complete the following
sai			10.	Compensation Strategy: 67 – 37	between prisms and pyramids.	worksheet and mark together
Ţ			Hundred:	Step 1: estimation: $70 - 40 = 30$	Explain that this will enable	and glue in books.
it			422 + 178 = 400 + 200 = 600	Step 2: Round 37 to the next	students to decipher which net	https://www.math-
lic			588 + 192 = 600 + 200 = 800	multiple of 10 which is 40 $(37 + 3 = 10)$	certain 3D shapes belong to e.g.	salamanders.com/image-
ф.			147 + 679 = 100 + 700 = 800	40)	meet at a point would be a	files/3d-shapes-worksheets-
Ê			Split stratogy:	Step 3: $67 - 40 = 27$	pyramiu:	find-the-nets-1.gif
			This mental strategy is splitting	Step 4: $27 + 3 = 30$ (we added 3 to	abt126 (primary differences	Additional resources:
			hoth numbers into parts before	much Now we need to add the 2	botwoon prisms and pyramids	http://www.bbc.co.uk/bitesize/
			adding together Example: 57 + 49	to get the correct answer)	• 3D shape Nets: A pet is a two-	ks3/maths/shape_space/3d_sha
			Step 1: estimate by adding	to get the correct answer.)	dimensional plan or shane that	pes/revision/3/
			numbers to the nearest $10 = 60 +$	lumn Strategy: 87 – 34 =	can be folded to make a three-	
			50 = 110 – our answer is estimated	Step 1: estimation = $90 - 30 = 60$	dimensional solid. For some solids	
			around 110.	Model using on board using blank	such as the cube, there are many	
			Now continue to use the mental	number line = 53	different nets. Some 3D shapes.	
			strategy.		like cubes and pyramids, can be	
			Step 2: 50 + 40 = 90		opened out and unfolded into a	
			Step 3: 90 + 7 = 97 (adding 7 from		flat shape. The unfolded shape is	
			57)		called the net of the solid. View	
			Step 4: 97 + 9 = 106 (adding 9 from		following PowerPoint and	
			49). Our overall answer is 106 and		YouTube clip and encourage	
			our estimation was 110. Our		students to sketch and label the	
			estimation was reasonable as we		nets in their books.	
			were close.		http://www.primaryresources.co.	
					uk/maths/powerpoint/3d shapes	
			Compensation Strategy:		nets.ppt	
			This strategy requires you to add		https://youtu.be/SwDjm6Ra1W4	
			too much and then take away the		 Place an activity similar to the 	
			difference.		image below where students	

		Example: 78 + 36 Step 1: estimation: 80 + 40 = 120.		demonstrate their learning by matching the shape with the	
		Step 2: Round 8 to the next multiple of 10 which is 80 (78 + 2 = 80)		correct name and net.	
		Step 2: 80 + 30 =110 + 6 (from 36) = 116		cube	
		Step 3: 116 – 2 = 114 (We added 2			
		to 78 to make 80, so now we must		svinder	
		answer.)			
		,			
		Jump Strategy:			
		The jump strategy is a mental strategy that adds the second			1
		number in stages. It can be used on			
		an empty number line to count up			
		rather than back.			
		673 + 7327			
		+7 +20 +300 +7000			
		673 680 700 1000 8000 Step 1: estimation:			
	Revision Group - Names	Work with these students to	Work with these students to	5/6M Town Groups	Have pre-cut 3D net
		complete a range of addition	complete a range of subtraction	Based on Continuum	shapes and work with the
		problems to continue modelling	problems to continue modelling	Clusters	students to fold and
		the following activity sheet.	estimation.	Clusters	identify what each net
p ies		https://www.teacherspayteachers.c			creates. Students sketch
ou vit		om/Product/Rounding-Numbers-			the nets into their books
ษัย		and-Estimating-Sums-345403			and label the properties of
Ā					the shapes. Encourage
					students to identify which
					shapes a prisms and
					pyramids.

Group Activities	Middle Group- Names	Rounding and estimation task cards. Students answer questions in work book and mark after a 10-15-minute session. Students must also use mental strategy to find exact answers to questions e.g. split strategy etc. https://www.teacherspaytea chers.com/FreeDownload/FR EE-Estimation-and-Rounding- Task-Card-Set-of-20-Task- Cards-1412081	Estimation using subtraction. <u>http://www.math-</u> aids.com/cgi/pdf viewer 9. cgi?script name=est sum d iff 3 horiz.pl&p type=1&p round=0&ex work=0&langu age=0&memo=&answer=1& x=99&y=22	5/6M Town Groups Based on Continuum Clusters	Students choose a net at random and cut it out. Students will then get a colored piece of paper and re-sketch the net using a ruler. Students will write the properties of their shape and the net they previously cut out, students will glue the sides and create the shape and glue it onto the colored sheet. These will be displayed in the room.
Group Activities	Main Group – Names	Students independently complete addition estimation word problems (up to 4 digits). Mark after session. <u>http://www.math- aids.com/cgi/pdf_viewer_9.c</u> <u>gi?script_name=word_sum_</u> <u>diff_4digit.pl&p_type=0&p_r_ound=0&language=0&memo</u> <u>=&answer=1&x=133&y=37</u>	Students independently complete subtraction estimation word problems (up to 4 digits). Mark after session. <u>http://www.math- aids.com/cgi/pdf_viewer_9.</u> <u>cgi?script_name=word_sum</u> <u>diff_4digit.pl&p_type=1&p</u> <u>round=0&language=0&me</u> <u>mo=&answer=1&x=76&y=2</u> <u>Z</u>	5/6M Town Groups Based on Continuum Clusters	Which Face? Stage: 3 Short Stage: 3 Short The students create this net and fold it into a cube. It is placed on a table with the face on top. Students work out which face is at the bottom? In this challenge, the students need to create and measure a net that when placed together, makes a correctly proportioned and enclosed cube. https://orich.maths.org/13570
Feedback/ Exit Slip	Feedback – Use the thumb method after explicit modelling to determine students understanding and where they will be placed for group activities. Marking Exit Slips – Next to each students Exit Slip, the teacher will check students answers and will either write an: A = Achieved N/Y = Not Yet N/Y students will become your target group.	Answer addition questions using estimation: Revision: 67 + 38 84 + 29 Middle: 378 + 274 834 + 987 Main: 8637 + 9834 4264 + 5613	Answer subtraction questions using estimation: Revision: 76 - 53 98 - 25 Middle: 872 - 637 413 - 522 Main: 6374 - 3284 9728 - 6272	Students write the differences between prims and pyramids.	Students sketch a 3D net of their choosing and label it on their exit slip.

	• Students complete a range of addition and subtraction word problems using estimation first and then solving the actual answer using a mental or				Students compete Middle Group Activity.		
rs/	 written strategy for practice. Provide students with shopping of the students withe students with sh	ratalogues OB allow use of their BYOD to s	Students create 3D shapes using toothpicks, modelling clay, straws etc. Students will write the properties of their shape				
arly she ensi	using estimation to see if they ha	ave enough money to purchase the items	• Students create OR play the who am I game using 3D shapes as their				
ці ш						topic. E.g. I have 1 curved surface. I have no vertices. I have no opposite	
			sides = sphere.				
			 Students create an artwork using on 	ly 3D shapes.			
<u> </u>							
ii a							
at							
st							
gi,							
Re							