Stage 3 Maths Program

NSW K-10 Mathematics Syllabus Outcomes

Multiplication and Division (1)

MA3-6NA - Selects and applies appropriate strategies for multiplication and division, and applies the order of operations to calculations involving more than one operation

- Use and record a range of mental and written strategies to multiply by one- and two-digit operators
- Solve word problems and record the strategy used
- Use estimation to check answers to calculations

Angles (1) - relate to 3D Space

MA3-16MG - Measures and constructs angles, and applies angle relationships to find unknown angles

- Recognise the need for formal units to measure angles
- Measure, compare and estimate angles in degrees (up to 360°)

Working Mathematically

- MA3-1WM Describes and represents mathematical situations in a variety of ways using mathematical terminology and some conventions
- MA3-2WM Selects and applies appropriate problem-solving strategies, including the use of digital technologies, in undertaking investigations
- MA3-3WM Gives a valid reason for supporting one possible solution over another

Assessment

SENA 3 and 4 if you haven't completed in Week I and 2

Use SENA I and 2 if needed - IEP for these students

Learning Goal - Multiplication and Division (refer to outcome)

Success Criteria - Multiplication and Division (refer to indicators)

TIB - We need to learn these skills so that we can apply them to real life situations (handling money, sharing things with friends, cutting food into portions).

Learning Goal - Angles (refer to outcome)

Success Criteria -Angles (refer to indicators)

TIB - Angles are used throughout geometry to describe shapes and to explain the behaviour of lines.

Homework - None this week

Term I

Mel Reskic and Alliera Carroll – Shell Cove Public School

Week 3

Mathematics Weekly Plan

Term – **1**234 **Week** – 12**3**4567891011 **Strands** – Multiplication and Division (1)/ Angles (1)

		Monday	Tuesday	Wednesday	Thursday	Friday
Key Ideas:		Whole Number			Data	
Warm Up		Pre-Test: Multiplication & Division/ Angles	Ninja Maths	Ninja Maths	5 Minute Frenzy	Post-Test: Multiplication & Division/ Angles
Problem of the Day		 Pre- test: Multiplication & Division: Write multiplication problems on the board and students will answer (one question at a time) individually on a whiteboard. Record students who get answer wrong only (focus/revision group). Begin with simple and then create extension questions. Questions below are examples: 4 x 5 26 x 7 426 x 6 – correctly answered will become main group. Pre-Test: Angles: Page 35 https://numeracyskills.com.au/re sources/Stage 3_Diagnostics_Tas k_Job.pdf - 	• Encourage students to use the expanded method to solve: Chad bought 8 boxes of pens. There were 765 pens in each box. How many pens did Chad buy?	• Encourage students to use the area method to solve: If Riley eats 6 biscuits a day, how many does he eat over 94 days?	Encourage students to use long multiplication/ algorithm method to solve: There are 47 squares on each red-and-white chequered tablecloth. How many squares are there on 4 tablecloths?	 Post- test: Multiplication & Division: Open ended: students will choose two strategies learned throughout the week and complete 2 x 1 or 3 x 1-digit problems (students will choose their own numbers but must have a minimum of 2 x 1-digit problems only e.g. 34 x 7). Post-Test: Angles: Open ended – students will use a protractor and draw 2 angles and name them according to type and degree.

	Introduce students to a	Model solving multiplication problems	Introduce students to written	• Revise students understanding of angles.	 Discuss and list the features of a
Main Focus +	range of mental and written	using the area model. Watch YouTube clip	strategies e.g. long	Begin by encouraging students to draw an	protractor, e.g. they all have a baseline,
Language	strategies to multiply two, three-	for simple demonstration:	multiplication/written algorithm.	angle in their books using a ruler and label	a centre marked on the baseline, a scale
	and four-digit numbers by one-digit	https://www.youtube.com/watch?v=qdYV 6i-kXcA	• Model examples on the board and	the parts of an angle.	 beginning at 0°. Most protractors have two scales, one
	numbers, including: using the	 Explain to students that a way to multiply is 	encourage students to write steps	• Explicitly model: Parts of an Angle: The corner point of an angle is called	on the inside of the curve and one on the
	expanded method of multiplication	to break numbers into smaller parts,	as you go in their books.	the vertex.	outside of the curve. Each scale goes
	for multiplying the thousands, then	or decompose numbers.	, .	 And the two straight sides are 	from 0° to 180°.
	the hundreds, then the tens and	 Review the concept of decomposing 	• Example 1:	called arms.	 Model how to construct other angles using the hovercam and a protractor.
	-	numbers by place value (i.e. 12 = 10 +	• 63 x 4:	• The angle is the <i>amount of turn</i> between	Use the following website to assist in
	then the ones then adding the	 2 or 36 = 30 + 6). Ask students to decompose a few numbers 	1	each arm.View image below from Maths is Fun.	helping you how to explicitly model. Use
	answers together.	with a partner and call on students to share	6 3	• view mage below nom maths is run.	some of the following examples for
	Quick revision of place	answers (i.e. decompose: 82, 17, 24).	× 4	E	students to complete independently. https://www.slideshare.net/adamharbot
	value may be required e.g. $234 = 2$	Explain to the class that we are going to			t/constructing-an-angle-or-triangle-
	hundreds (200), 3 tens (30) and 4	use what we know about area and	2	*	using-a-protractor
	ones/units.	decomposing numbers to multiply two- digit numbers.		i orm	 Ensure to explain to students that when using a protractor, remember to place
	• Example 1:	 Write a two-digit times one-digit problem 	Method:	vertex	the middle of your protractor directly on
	$= 32 \times 4 = (30 \times 4) + (2 \times 4)$	on board (i.e. 5 x 16).	• Multiply the ones: 4 × 3 = 12		the vertex of the angle, and then line up
	= 120 + 8 = 128.	Draw a rectangle on the board and explain	 Place 2 in the ones place, but 	 Brainstorm student's prior knowledge of 	the 0° point on the outer edge along one
	Continue modelling more	that in this problem, the factors 5 and 16	write	angles and discuss some of the types.	of the rays (or arms) of the angle. Take care that you read the numbers that
	examples and ask students to	are the length and width of the rectangle.	• the tens digit (1) above the tens	Provide definitions for angles and ensure students record these in their books e.g. A	start from the 0° and go forwards, not
	contribute to answering questions.	 Label the short side of the rectangle with 5. Then, tell students that since 16 is a two- 	• column as a little memory note.	right angle is an internal angle which is	backwards around from 360°.
	Example 2: 213 x 5	digit number, it can be decomposed by	You are <i>regrouping</i> (or carrying).	equal to 90 degrees.	 Students practice measuring angles using a protractor by following these steps:
	Method:	place value (i.e. 10 + 6) so that it is easier			 Place the protractor over the angle to be
	• 213 is written as 200 + 10	to multiply.	1	• Examples:	measured.
	+ 3.	Draw a line to divide the long side of the	6 3	https://www.mathsisfun.com/angles.html	Move the protractor so the center of the
	• Then multiply 5 by each of	rectangle into two parts. Write 10 and 6 over the two divided parts so that you have	× 4	Names of Pingles	baseline is on top of the vertex of the
	these numbers separately and add	a rectangle that has an area of 10 x 5 and	<u> </u>	As the Angle Increases, the Name Changes!	angle.
	the products.	one with an area of 6 x 5 .	2 5 2	1 000	 Make sure the baseline is on top of one arm of the angle.
	• The result is (200 x 5) + (10	10 6		and high attace analys Freine Container	 Hold the protractor carefully so it does
	x 5) + (3 x 5).	5	• Then multiply the tens, <i>adding</i> the		not move.
	Answer:		1 ten that regrouped.	Type of Angle Description	 Count forwards from 0° along the scale
	$= (200 \times 5) + (10 \times 5) + (3 \times 5)$	Multiply to find the area of each portion of	• $4 \times 6 + 1 = 25$	Acute Angle is less than 90°	until you reach the other arm of the angle.
	= 1000 + 50 + 5	the divided rectangle and write the product	• Write 25 in front of the 2.	Right Angle is 90° exactly is greater than 90° but	 The number where this arm crosses the
	= 1065	inside the corresponding piece of rectangle (i.e. 50 and 30).		Obtuse Angle less than 180°	scale tells you the size of the angle in
	Example 3: 305 x 4	10 6	Note that 25 tens mean 250.	Straight Angle is 180° exactly	degrees.
	Method:	5 50 30	• Example 2:	Reflex Angle is greater than 180°	 Ensure to label the angle in terms of its degrees and its name e.g.
	• 300 is written as 300 + 0 +		3	Full Rotation is 360° exactly	degrees and its name e.g.
	5.	• Add the two partial products (parts of the	75		
	• Then multiply 4 by each of	total answer) to get the area of the entire	× 7	https://education.nsw.gov.au/teaching-	
	these numbers separately and add	rectangle, 50 + 30.	=	and-learning/student-assessment/smart-	
	the products.	• Explain to your students that the answer to	-	teaching-	
	The result is $(300 \times 4) + (300 \times 0) +$	 our multiplication problem, 16 x 5 is 80. Write 16 x 5 = 80 below the area model. 	• Method:	strategies/numeracy/measurement-	right angle = 90 ° acute angle < 90 ° obtuse angle > 90 °
	(300 x 5).	10 6	• Multiply the ones:	geometry/2d/Stage-3-space-and- geometry-2D	
	Answer:	5 50 30	$7 \times 5 = 35$. Regroup the 3 tens.	• Using an example, point out the right angle	
	= (300 x4) + (0 x 4) + (5 x 4)			and tell students that this square tells you that	
	=1200 + 0 + 20	50 + 30 = 80. • Model more examples using the area	3	the type of angle is a right angle and the	<u>~</u> < <u>~</u> 0 <u>—</u>
	=1200 + 20	model and encourage students to assist in	7 5	number tells you the angle size (90). Angles are measured in degrees (°). So, a right angle	straight angle = 180 $^\circ$ $$ reflex angle > 180 $^\circ$ $$ full turn = 360 $^\circ$
	=1220	solving the problem e.g. 684 x 5 =	× 7	is 90°. All the angles below are right angles.	
	1220	600 80 4			
		5 3000 400 20	<mark>52</mark> 5		
			 Multiply & add the tens: 		
			$7 \times 7 + 3 = 52.$		
		3000+400+20=3420	• Write more examples on the	• Show students that a right angle can be in any	
			 write more examples on the board. Encourage students to 	orientation or rotation as long as the internal angle is 90°.	
			0	•Test students by calling out a degree of an	
			answer using whiteboards.	angle they need to name and define e.g. 130 =	
	- Shell Cove Public School			obtuse, greater than 90 and less than 180 etc.	

Mel Reskic and Alliera Carroll – Shell Cove Public School

Explicit Teaching

Group Activities	Revision Group - Names	Work with this group. Students use deck of cards and pull 2 by 1 (2 x 1 digits) cards out at a time to create a range of multiplication problems and answer them using the expanded method. Students extend themselves to the next level when confident.	Work with this group. Students use deck of cards and pull 2 by 1 (2 x 1 digits) cards out at a time/ roll dice to create a range of multiplication problems and answer them using the expanded method. Students extend themselves to the next level when confident.	Work with this group. Students use deck of cards and pull 2 by 1 (2 x 1 digits) cards out at a time/ roll dice to create a range of multiplication problems and answer them using long multiplication/algorithm method. Students extend themselves to the next level when confident.	5/6M Town Groups - Based on Continuum Clusters	Work with this group. Using the angle sheets from the website, work with this group to use protractors to correctly measure the angles. https://education.nsw.gov.au /teaching-and- learning/student- assessment/smart-teaching- strategies/media/documents 2/numeracy/Right-angle.pdf
Group Activities	Middle Group- Names	Students use deck of cards and pull 3 by 1 (3 x 1 digits) cards out at a time to create a range of multiplication problems and answer them using the expanded method. Students extend themselves to the next level when confident.	Students use deck of cards and pull 3 by 1 (3 x 1 digits) cards out at a time/ roll dice to create a range of multiplication problems and answer them using the expanded method. Students extend themselves to the next level when confident.	Students use deck of cards and pull 3 by 1 (3 x 1 digits) cards out at a time/ roll dice to create a range of multiplication problems and answer them using long multiplication/ algorithm method. Students extend themselves to the next level when confident.	5/6M Town Groups - Based on Continuum Clusters	Constructing Angles: In pairs, students draw ten different angles for each other. Students then measure, label and order their partner's drawings.
Group Activities	Main Group – Names	Students use deck of cards and pull 3 by 3 (3 x 3 digits) cards out at a time to create a range of multiplication problems and answer them using the expanded method. Students extend themselves when confident e.g. 4 by 3 etc.	Students use deck of cards and pull 3 by3 (3 x 1 digits) cards out at a time/ rolldice to create a range of multiplicationproblems and answer them using thearea method. Students extendthemselves when confident e.g.multiplying 2-3-4-digit numbers by 2using area model (modelling of this willbe required) e.g. of 2 by 2 multiplicationusing the area model: 34×28 20 30 600 240 4 80 32	Students use deck of cards and pull 3 by 3 (3 x 1 digits) cards out at a time/ roll dice to create a range of multiplication problems and answer them using long multiplication/ algorithm method. Students extend themselves when confident e.g. multiplying 2-3-4-digit numbers by 2 using long multiplication/ algorithm method. (modelling of this may be required) e.g. of 2 by 2 multiplication using the area model: 34 x 28 3 by 2: 324 x 75	5/6M Town Groups - Based on Continuum Clusters	Constructing Angles: In pairs, students draw ten different angles for each other. Students then measure, label and order their partner's drawings.
Feedback/ Exit Slip	Feedback – Use the thumb method after explicit modelling to determine students understanding and where they will be placed for group activities. Marking Exit Slips – Next to each students Exit Slip, the teacher will check students answers and will either write an: A = Achieved N/Y = Not Yet N/Y students will become your target group.	Revision Group - $26 \times 3 = 20 \times 3 + 6 \times 3$ $= 60 + 18 = 78$ Middle Group - $45 \times 5 = 40 \times 5 + 5 \times 5$ $= 200 + 25 = 225$ Main Group - $86 \times 9 = 80 \times 9 + 6 \times 9$ $= 720 + 54 = 774$	Revision Group – 62 x 4 = 248 Middle Group – 73 x 6 = 438 Main Group – 735 x 6 = 4410	Revision Group – 25 x 6 = 150 Middle Group – 66 x 5 = 330 Main Group – 83 x 7 = 581	 Revision Group – Write a definition of an angle and its degree. Middle Group – Write a definition of an angle and its degree. Main Group – Write a definition of an angle and its degree. 	 Revision Group – Draw and label a right angle and explain why it is that angle e.g. because it is above or below Middle Group – Draw and label an acute angle explain why it is that angle e.g. because it is above or below Main Group – Draw and label an obtuse angle explain why it is that angle e.g. because it is above or below

Early Finishers/ Extension	 Students will work either in pairs them aloud. 	s tables based on personal learning goals/ s/individually and use whiteboards to prac d/or written strategy learned throughout	 Angling: In pairs, students take turns to nominate the size of an angle to create e.g. 50°. Both students estimate and draw an angle of the nominated size. Students use a protractor to measure their partner's angle. The student whose angle is closer to the nominated measurement is the winner. Variation: Students create two sets of cards, one with a range of angles drawn on them and the other with the measured size of the angles. They play a concentration game with the cards. 			
Reflection/ Registration/ Feedback						